THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5540 Advanced Geometry 2016-2017 Quiz 2 Date: 6 Apr, 2017

- Time allowed: 60 minutes
- Total points: 20 points

Recall the axioms of incidence, axioms of betweenness, axioms of congruence for line segments and angles:

- **I1**. For any distinct points A, B, there exists a unique line l_{AB} containing A, B.
- I2. Every line contains at least two points.
- **I3**. There exist three noncollinear points.
- **B1.** If a point B is between two points A and C (written as A * B * C), then A, B and C are distinct points on a line, and also C * B * A.
- **B2**. For any two distinct points A and B, there exists a point C such that A * B * C.
- **B3**. Given three distinct points on a line, one and only one of them is between the other two.
- **B4.** Let A, B and C be three noncollinear points, and let l be a line not containing any of A, B and C. If l contains a point D lying between A and B, then it must also contain either a point lying between A and C, but not both.
- C1. Given a line segment AB, and given a ray r originating at a point C, there exists a unique point D on the ray r such that $AB \cong CD$.
- **C2.** If $AB \cong CD$ and $AB \cong EF$, then $CD \cong EF$. Every line segment is congruent to itself.
- **C3.** Given three points A, B, C on a line satisfying A * B * C, and three further points D, E, F on a line satisfying D * E * F, if $AB \cong DE$ and $BC \cong EF$, then $AC \cong DF$.
- **C4.** Given an angle $\angle BAC$, and given a ray r_{DF} , there exists a unique ray r_{DE} , on a given side of the line l_{DF} , such that $\angle BAC \cong \angle EDF$.
- **C5.** For any three angles α , β , γ , if $\alpha \cong \beta$ and $\alpha \cong \gamma$, then $\beta \cong \gamma$. Every angle is congruent to itself.
- **C6.** Given triangles $\triangle ABC$ and $\triangle DEF$, suppose that $AB \cong DE$, $AC \cong DF$ and $\angle BAC \cong \angle EDF$, then $BC \cong EF$, $\angle ABC \cong \angle DEF$ and $\angle ACB \cong \angle DFE$.

A Hilbert plane is a given set (of points) together with certain subsets called lines, and undefined notions of betweenness, congruence for line segments, and congruence for angles that satisfying all the above axioms.

- 1. On a Hilbert plane:
 - (a) (i) Given two line segments AB and CD. State the definition of AB > CD.
 - (ii) State the definition of an interior point of an angle $\angle BAC$.
 - (iii) Given two distinct points O and A. State the definition of the circle Γ with center O and radius OA and state the definition of an interior point of Γ .
 - (b) Given a line segment AB and a point O. Prove that a circle with center O and radius congruent to AB can be constructed.
 - (c) (Bouns) Suppose that the Hilbert plane also satisfies the circle-circle intersection property:
 - **E**. Given two circles Γ and γ , if Γ contains at least one interior point of γ and at least one exterior point of γ , then Γ and γ will intersect.

Given two line segments BC and DE with BC < DE. Prove that an isosceles triangle $\triangle ABC$ can be constructed such that AB and AC are congruent to DE.

(10 (+3) points)

- 2. Given four distinct points z_1 , z_2 , z_3 and z_4 on \mathbb{C} , recall that the 4-point ratio of them $[z_1, z_2, z_3, z_4]$ is defined by $\left(\frac{z_4 z_2}{z_1 z_2}\right) / \left(\frac{z_4 z_3}{z_1 z_3}\right)$.
 - (a) Show that the function $f(z) = \frac{1}{z}$ preserves 4-point ratio.
 - (b) If $[z_1, z_2, z_3, z_4] = \lambda$, express $[z_2, z_1, z_4, z_3]$ in terms of λ . Hence, show that $[z_1, z_2, z_3, z_4]$ is real if and only if $[z_2, z_1, z_4, z_3]$ is real.

(6 points)

3. Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and $\operatorname{Aut}(\mathbb{D}) = \{f(z) = \lambda \frac{z-a}{\overline{a}z-1} : a, \lambda \in \mathbb{C}, |a| < 1, |\lambda| = 1\}.$ Given $f(z) \in \operatorname{Aut}(\mathbb{D})$, show that if |z| = 1, then |f(z)| = 1.

(4 points)